手机浏览器扫描二维码访问
林朝夕:“……”
——
那天晚上,林朝夕破天荒押着老林,要跟在他身边学习。
距她离开这个世界还有100天。
在这100天内,老林不仅要完成整个错误的论证,还要推翻自己的论证,并且要在此之上有全新的发现。
就算她有草莓世界老林的全部研究结果,但也不能把东西直接抄下来交给老林。
究竟要怎么办,她必须在老林身边,试探世界规则、找到正确方法,和解题一样。
老林对于她跟着倒没什么意见,当天晚上,林朝夕就把自己的回家作业搬进老林书房。
不过,老林同志对她的专业素养表示了怀疑:“你图论看了几页?”
林朝夕直接起身,走到老林的书架上,抽出第一版的《图论及其应用》,说:“都看完了。”
“嚯,了不起。”老林同志给她点了个赞,“书后的习题呢?”
“只做了一半,有很多不懂的。”
“那爸爸给你讲讲?”
“不行,你忙你的,我有不会的自己学,等你空了你再教我。”林朝夕很干脆拒绝,抱着书坐到自己的小桌上。
如果打开百度百科搜索图论,第一句话大概是这样的
——众所周知,图论起源于一个非常经典的问题,柯尼斯堡(konigsberg)问题。
柯尼斯堡这个词当然不那么“众所周知”,但如果换成它的另一个译名——七桥问题。就变成很多学生在小学奥数中都接触过的内容了。
一般它出现在小学奥数书“小知识”栏目中,配图是被一条河分隔开的a、b两地,河上有c、d两座小岛,有7座桥梁把岛屿同陆地联系起来。
问题如下:一个人要如何从a、b、c、d中任一块出发,恰好通过每座桥一次,再回到出发点?
当时有很多人都尝试过,发现似乎没办法做到这点。但这就是数学,无论可能或者不可能,都需要确切的证明。
于是,图论诞生了。
1736年,欧拉向圣彼得堡科学院递交了《哥尼斯堡的七座桥》的论文。将岛与河岸抽象为顶点,桥变成连接顶点的边,证明一次走完7桥且不重复这是不可能的。
在完成解答的同时,欧拉开创了数学的一个新的分支——图论与几何拓扑。
这就是数学,你永远不知道,在解决一个看似无意义的问题背后,会藏着有怎样的未来。
林朝夕又翻完一章的内容,心中感慨。
其实她深知,她在这个领域更深入的地方,帮不上什么忙。但对她来说,她的命运好像不由自主地与这个问题纠缠在一起。
多了解一点,深入地了解一点,或许能在某一个时刻,对老林有所帮助。
书桌前的老林同志还在埋头,安静作着他自己的演算。
这天晚上的学习……
林朝夕并没对老林有什么帮助,不仅如此,老林同志还看了下她的习题本,抽空给她讲了个证明。
他们又聊了会儿七桥问题,老林说正好,他小学奥数班正好要上到这个内容,让她周末给小朋友们讲讲。
于是林朝夕莫名其妙开始想起了这节课要怎么上。
豪门反派太爱我怎么办 小心恶公子 太后的演绎生涯 哦豁!虐文炮灰不干了! 撩你会上瘾 助理狂炫酷霸拽 归来[快穿] 完结+番外 穿成虐文女主我氪金成神 摸金令 成王败寇 在末日躲躲藏藏的日子 全职法师之最强辅助 农门婆婆的诰命之路 再度撩情,前夫放开我 重生之全职业巨星 头号超模 重生甜妻请签收 高大上的逗比[网配] 谍战:红色特工之代号不死鸟 听说你是重生的
雷林带着智脑穿越,成为一名贵族身份的巫师学徒,通过利用自身优势,学习成为巫师,获得术士的传承,走上血脉的道路,在神秘诡异的巫师世界进行一系列探险,最后获得永恒的故事。...
...
他叫郁墨夜,大齐四王爷,在外为质二十载。一夕返朝,一场惊变,他和另一个女子的命运彻底被改写。...
命运,不配做我的对手!当我回到2003年的时候,我知道,我已经踏上了成为传奇巨星的道路各位书友要是觉得超级传奇巨星还不错的话请不要忘记向您...
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...